Excel is the worst. If you want to live a long and healthy life, drop it.
Excel does nothing that Python can’t do better. Let’s learn a little bit about Python Pandas.
If you drop Excel for Python (and I mean, never use Excel EVER), I guarantee you that you will never regret it.
These 17 Pandas functions will help you replace Excel with Pandas.
import pandas as pd df = pd.read_excel('filename.xlsx') # Read Excel File df.to_excel('filename.xlsx', index=Fales) # Save Excel File df.read_csv('filename.csv') # Read CSV File df.to_csv('filename.csv') # Save CSV File df.head() # Preview dataframe df.count() # Count Rows df.describe() # Get general statistics (min,max,mean,std,...) df['col_name'] # Select one column df['col_name'].value_counts() # Get unique value count df.fillna(0) # Replace Null values df.dropna() # Remove Null values df[df['col_name'] == 0] # Filter DataFrame df.drop_duplicates() # Remove duplicates df.join(df2,on='col_name') # vlookup df.groupby(['col1','col2']).sum() # Pivot/Groupby df.groupby(['col1','col2']).agg({'col1':'sum','col2','count'}) df.plot() # Plot your DataFrame df = pd.get_dummies(pd.Series(list('abcaa'))) # Create dummy dataframe
Import Package
The first step is to import the pandas package into your code.
import pandas as pd
Work With Excel Files
import pandas as pd df = pd.read_excel('filename.xlsx') # Read Excel File df.to_excel('filename.xlsx', index=Fales) # Save Excel File
Work With CSV Files
import pandas as pd df.read_csv('filename.csv') # Read CSV File df.to_csv('filename.csv') # Save CSV File
Preview DataFrame
To preview you Dataframe, use the head()
method.
df.head() # Preview dataframe df.count() # Count Rows df.describe() # Get general statistics (min,max,mean,std,...) df['col_name'] # Select one column df['col_name'].value_counts() # Get unique value count df.fillna(0) # Replace Null values df.dropna() # Remove Null values df[df['col_name'] == 0] # Filter DataFrame df.drop_duplicates() # Remove duplicates df.join(df2,on='col_name') # vlookup df.groupby(['col1','col2']).sum() # Pivot/Groupby df.groupby(['col1','col2']).agg({'col1':'sum','col2','count'}) df.plot() # Plot your DataFrame df = pd.get_dummies(pd.Series(list('abcaa'))) # Create dummy dataframe
Get Statistics
df.head() # Preview dataframe df.count() # Count Rows df.describe() # Get general statistics (min,max,mean,std,...) df['col_name'].value_counts() # Get unique value count
Work with DataFrame
df['col_name'] # Select one column df.fillna(0) # Replace Null values df.dropna() # Remove Null values df[df['col_name'] == 0] # Filter DataFrame df.drop_duplicates() # Remove duplicates
Replace Vlookup With Join
df.join(df2,on='col_name') # vlookup
Replace Pivot Tables with GroupBy
df.groupby(['col1','col2']).sum() # Pivot/Groupby df.groupby(['col1','col2']).agg({'col1':'sum','col2','count'})
Plot Your DataFrame
df.plot() # Plot your DataFrame
This is it. You can now replace Excel with Python and never look back. If you are hooked, try 30 days of Pandas.
Sr SEO Specialist at Seek (Melbourne, Australia). Specialized in technical SEO. In a quest to programmatic SEO for large organizations through the use of Python, R and machine learning.